首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15659篇
  免费   2323篇
  国内免费   2285篇
化学   11410篇
晶体学   585篇
力学   2440篇
综合类   103篇
数学   757篇
物理学   4972篇
  2024年   21篇
  2023年   212篇
  2022年   404篇
  2021年   532篇
  2020年   892篇
  2019年   626篇
  2018年   562篇
  2017年   663篇
  2016年   924篇
  2015年   835篇
  2014年   958篇
  2013年   1321篇
  2012年   877篇
  2011年   1104篇
  2010年   914篇
  2009年   932篇
  2008年   1063篇
  2007年   1082篇
  2006年   983篇
  2005年   852篇
  2004年   787篇
  2003年   731篇
  2002年   474篇
  2001年   458篇
  2000年   370篇
  1999年   281篇
  1998年   253篇
  1997年   197篇
  1996年   166篇
  1995年   123篇
  1994年   130篇
  1993年   97篇
  1992年   78篇
  1991年   64篇
  1990年   55篇
  1989年   43篇
  1988年   26篇
  1987年   32篇
  1986年   33篇
  1985年   20篇
  1984年   21篇
  1983年   18篇
  1982年   16篇
  1981年   7篇
  1980年   2篇
  1979年   9篇
  1978年   3篇
  1977年   4篇
  1971年   6篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
31.
Driven and non-equilibrium quantum states of matter have attracted growing interest in both theoretical and experimental studies in condensed matter physics. Recent progress in realizing transient collective states in driven or pumped Dirac materials (DMs) is reviewed herein. In particular, the focus is on optically pumped DMs which are a promising platform for transient excitonic instabilities. Optical pumping combined with the linear (Dirac) dispersion of the electronic spectrum offers a knob for tuning the effective interaction between the photoexcited electrons and holes, and thus provides a way of reducing the critical coupling for excitonic instability. As a result, a transient excitonic condensate could be achieved in a pumped DM while it is not feasible in equilibrium. A unifying theoretical framework is provided for describing transient collective states in 2D and 3D DMs. The experimental signatures are described and numerical estimates of the size of the dynamically induced excitonic gaps and the values of the critical temperatures for several specific systems, are summarized. In addition, general guidelines for identifying promising material candidates are discussed. Finally, comments are provided regarding recent experimental efforts in realizing transient excitonic condensate in pumped DMs, and outstanding issues and possible future directions are outlined.  相似文献   
32.
The studies of electron transport through a junction of topological materials in the literature so far ignore the coupling of a topological material to its surrounding environment. Here, the dynamics of an open system through a stochastic Hamiltonian are simulated to investigate the influence of the environment on the scattering of electrons by a junction of different topological materials, such as a Dirac–Weyl magnetic junction and a topological insulator. It is found that, although the detrimental effect of the environment is inevitable, the Landauer conductance can be enhanced via adjusting the system–environment coupling strength. This result supplies the possibilty of changing the transport feature of topological materials by modulating the surrounded environment. It is also demonstrated that a non-Hermitian Hamiltonian can be used to replace the stochastic Hamiltonian for this study, when the system and the environment coupling are weak.  相似文献   
33.
Camouflage and wound healing are two vital functions for cephalopods to survive from dangerous ocean risks. Inspired by these dual functions, herein, we report a new type of healable mechanochromic (HMC) material. The bifunctional HMC material consists of two tightly bonded layers. One layer is composed of polyvinyl alcohol (PVA) and titanium dioxide (TiO2) for shielding. Another layer contains supramolecular hydrogen bonding polymers and fluorochromes for healing. The as-synthesized HMC material exhibits a tunable and reversible mechanochromic function due to the strain-induced surface structure of composite film. The mechanochromic function can be further restored after damage because of the incorporated healable polyurethane. The healing efficiency of the damaged HMC materials can even reach 98 % at 60 °C for 6 h. The bioinspired HMC material is expected to have potential applications in the information encryption and flexible displays.  相似文献   
34.
为系统地验证复合材料失效判据计算精度和有效性范围,给出了4种材料体系、6种铺层形式的层合板在单轴、双轴载荷下的失效试验数据,用以评估复合材料失效判据在单向层合板失效包线、多向层合板初始失效包线、多向层合板最终失效包线、层合板变形及层合板的破坏特性等五个方面的预测能力。并根据验证方法和有效性评估策略对失效判据计算精度进行量化考核,给出了失效判据在五个层面上的计算精度。  相似文献   
35.
Nowadays, nanostructures have been given significant attention in medical and biological fields. Among these nanostructures, graphene oxide (GO) has been widely used in drug delivery systems, because of its unique properties, and the ability to connect to other nanostructures such as magnetic nanoparticles (NPs) as well as polymers by its functional groups. In this research, first, GO was prepared by exfoliating graphite according to the modified Hummer’s method, and then the Fe3O4 NPs were synthesized by a simple co-precipitation method on GO nanosheets. In the next step, with the help of the ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide coupling reagents, the polyethylene glycol (PEG) polymer was bonded to the GO-Fe3O4 nanocomposite. Finally, anti-cancer drug, curcumin (Cur) was loaded onto the nanocomposite and the Cur loading ratio was measured at about 8%. The samples were evaluated using Fourier transform-infrared, differential scanning calorimtery, vibrating-sample magnetometry, atomic force microscopy and dynamic light scattering techniques. The results show that the prepared nanocomposite is an appropriate candidate for biomedical applications.  相似文献   
36.
ABSTRACT

TiC-MgO composite was developed as a heating element for X-ray study in the multi-anvil high pressure apparatus. We synthesized TiC-MgO blocks (50–70 wt.% of TiC) by compression in a cold isostatic press followed by baking in a gas flow furnace. Heaters of tubular shape were manufactured from the synthesized blocks either by lathe or numerically controlled milling machine. The so-produced heating elements have been proved to generate temperatures up to 2250?K at 10?GPa, condition where classical graphite heaters are not suitable anymore due to graphite-diamond transition. These new heaters have been successfully used for in situ X-ray radiography and diffraction measurements on liquid Fe alloys, exploiting excellent X-ray transparency.  相似文献   
37.
This paper presents the development of a code, called GEBTAero, dedicated to very flexible aircraft (VFA) aeroelasticity and especially the evaluation of aeroelastic tailoring effect on critical speeds. GEBTAero is an open source code consisting in a tightly coupling between a geometrically exact beam theory -and a finite state induced flow unsteady aerodynamic model, including an homogenisation tool. This model has been implemented in Fortran using GEBT code and optimised open source libraries with particular focus on computation speed. Besides a non linear transient dynamic simulation capacity, a particular focus is put on the fast critical speed computation strategy using a non-iterative modal approach about the geometrically non linear deformed shape of the wing with the computation of only a few aeroelastic modes. Computation speed and accuracy of this implementation is assessed using widely used aeroelastic test cases and compared successfully to other aeroelastic codes. Configurations using aeroelastic tailoring, which are the core target of this solver, are then evaluated numerically on a representative high aspect ratio anisotropic composite wing and a simple 2-ply composite laminates with both variable ply orientations. It illustrates the strong correlation between the structural bending/twisting coupling of an unbalanced composite laminates and its critical aeroelastic speed. It also shows the high sensitivity of ply orientation on the aeroelastic behaviour.  相似文献   
38.
39.
Mesoporous carbon (m‐C) has potential applications as porous electrodes for electrochemical energy storage, but its applications have been severely limited by the inherent fragility and low electrical conductivity. A rational strategy is presented to construct m‐C into hierarchical porous structures with high flexibility by using a carbon nanotube (CNT) sponge as a three‐dimensional template, and grafting Pt nanoparticles at the m‐C surface. This method involves several controllable steps including solution deposition of a mesoporous silica (m‐SiO2) layer onto CNTs, chemical vapor deposition of acetylene, and etching of m‐SiO2, resulting in a CNT@m‐C core–shell or a CNT@m‐C@Pt core–shell hybrid structure after Pt adsorption. The underlying CNT network provides a robust yet flexible support and a high electrical conductivity, whereas the m‐C provides large surface area, and the Pt nanoparticles improves interfacial electron and ion diffusion. Consequently, specific capacitances of 203 and 311 F g?1 have been achieved in these CNT@m‐C and CNT@m‐C@Pt sponges as supercapacitor electrodes, respectively, which can retain 96 % of original capacitance under large degree compression.  相似文献   
40.
A photoresponsive discrete metallogelator was rationally designed by incorporating a photochromic azobenzene subunit in the structure of a redox‐active ferrocene–peptide conjugate. The target molecule was purposefully equipped with a dipeptide unit capable of self‐assembly in response to sonication. The designed molecule was shown to undergo supramolecular self‐assembly and achieve organogelation in response to ultrasound, light, heat, and redox signals. The sol–gel phase transition of the designed gelator was found to be sensitive to a plethora of input stimuli, allowing the application of the sol–gel transition behavior in basic logic gate operations. A gel‐based NOT logic gate operation was realized when the redox‐active property of the organogel was examined by using different oxidizing agents. The smart response of the gelator was further exploited in designing XOR operations under oxidizing or non‐oxidizing conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号